[68] F. Bollin, V. Dechavanne, and L. Chevalet, “Design of Experiment in CHO and

HEK transient transfection condition optimization,” Protein Expr. Purif., vol. 78,

no. 1, pp. 61–68, 2011, doi: 10.1016/j.pep.2011.02.008

[69] N. R. Visaveliya and J. M. Köhler, “Single-step in situ assembling routes for the

shape control of polymer nanoparticles,” Biomacromolecules, vol. 19, no. 3,

pp. 1047–1064, Mar. 2018, doi: 10.1021/acs.biomac.8b00034

[70] S. Choosakoonkriang, B. A. Lobo, G. S. Koe, J. G. Koe, and C. R. R. Middaugh,

“Biophysical characterization of PEI/DNA complexes,” J. Pharm. Sci., vol. 92,

no. 8, pp. 1710–1722, Aug. 2003, doi: 10.1002/jps.10437

[71] E. J. Cho, H. Holback, K. C. Liu, S. A. Abouelmagd, J. Park, and Y. Yeo, “Nanoparticle

characterization: State of the art, challenges, and emerging technologies,” Mol. Pharm.,

vol. 10, no. 6, pp. 2093–2110, Jun. 2013, doi: 10.1021/mp300697h

[72] W. Zhang et al., “Nano-structural effects on gene transfection: Large, botryoid-shaped

nanoparticles enhance DNA delivery via macropinocytosis and effective dissocia-

tion,” Theranostics, vol. 9, no. 6, pp. 1580–1598, 2019, doi: 10.7150/thno.30302

[73] D. Pezzoli, E. Giupponi, D. Mantovani, and G. Candiani, “Size matters for in vitro

gene delivery: Investigating the relationships among complexation protocol,

transfection medium, size and sedimentation,” Sci. Rep., vol. 7, no. 1, p. 44134,

Apr. 2017, doi: 10.1038/srep44134

[74] L. Cervera, I. Gonzalez-Dominguez, M. M. Segura, and F. Godia, “Intracellular

characterization of Gag VLP production by transient transfection of HEK 293

cells,” Biotechnol. Bioeng., vol. 114, no. 11, pp. 2507–2517, 2017, doi: 10.1002/

bit.26367

[75] S. Geisse and M. Henke, “Large-scale transient transfection of mammalian cells: A

newly emerging attractive option for recombinant protein production,” J. Struct.

Funct. Genomics, vol. 6, pp. 165–170, 2005, doi: 10.1007/s10969-005-2826-4

[76] P. L. Pham et al., “Large-scale transient transfection of serum-free suspension-growing

HEK293 EBNA1 cells: Peptone additives improve cell growth and transfection effi-

ciency,” Biotechnol. Bioeng., vol. 84, pp. 332–342, 2003, doi: 10.1002/bit.10774

[77] R. Tom, L. Bisson, and Y. Durocher, “Transfection of HEK293-EBNA1 cells in

suspension with linear PEI for production of recombinant proteins,” CSH Protoc.,

vol. 2008, no. 3, Jan. 2008.

[78] S. Geisse, “Reflections on more than 10 years of TGE approaches,” Protein Expr

Purif, vol. 64, no. 2, pp. 99–107, 2009, doi: 10.1016/j.pep.2008.10.017

[79] L. Baldi, D. L. Hacker, M. Adam, and F. M. Wurm, “Recombinant protein pro-

duction by large-scale transient gene expression in mammalian cells: State of the art

and future perspectives,” Biotechnol. Lett., vol. 29, no. 5, pp. 677–684, 2007, doi:

10.1007/s10529-006-9297-y

[80] G. Berntzen, E. Lunde, M. Flobakk, J. T. Andersen, V. Lauvrak, and I. Sandlie,

“Prolonged and increased expression of soluble Fc receptors, IgG and a TCR-Ig

fusion protein by transiently transfected adherent 293E cells,” J. Immunol. Methods,

vol. 298, no. 1–2, pp. 93–104, Mar. 2005, doi: 10.1016/j.jim.2005.01.002

[81] Y. Durocher, S. Perret, and A. Kamen, “High-level and high-throughput re-

combinant protein production by transient transfection of suspension-growing

human 293-EBNA1 cells,” Nucleic Acids Res., vol. 30, no. 2, p. E9, Jan. 2002,

Accessed: May 31, 2014. [Online]. Available: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=99848&tool=pmcentrez&rendertype=abstract

[82] K. Van Craenenbroeck, P. Vanhoenacker, and G. Haegeman, “Episomal vectors for

gene expression in mammalian cells,” Eur. J. Biochem., vol. 267, pp. 5665–5678, 2000.

[83] P. Meissner, H. Pick, A. Kulangara, P. Chatellard, K. Friedrich, and F. M. Wurm,

“Transient gene expression: recombinant protein production with suspension-

adapted HEK293-EBNA cells,” Biotechnol. Bioeng., vol. 75, no. 2, pp. 197–203,

264

Bioprocessing of Viral Vaccines